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Morphological and Behavioral Markers of
Environmentally Induced Retardation of
Brain Development: An Animal Model
by Joseph Altman*

In most neurotoxicological studies morphological assessment focuses on pathological effects, like de-
generative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell
reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological
symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal
reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents,
which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called
microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction
in the normal population of late-generated, short-axoned neurons in specific brain regions.
Correlated descriptive and experimental neurogenetic studies in the rat have established that all the

cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally,
and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively
interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Sub-
sequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound
hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hy-
peractivity, as well as attentional and learning deficits.
There is much indirect clinical evidence that various harmful environmental agents affecting the preg-

nant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning
disorders. As the developing human brain is more mature at birth than the rat brain, the risk for micro-
neuronal hypoplasia and consequent behavioral disorders may be highest at late stages of fetal develop-
ment, in prematurely born and small-for-weight infants, and during the early stages of infant development.
Recent technological advances in brain imaging techniques make it possible to test this hypothesis and
to assess the possible relationship between the degree ofretarded brain development and ensuing behavioral
disorders.

Introduction
Most current neurotoxicological investigations are

concerned with the demonstration and analysis of frank
pathological changes produced by toxicants and other
harmful environmental agents and with the assessment
of associated neurological and behavioral abnormalities.
Examples of neuropathological changes that are usually
examined are brain lesions, edema, sclerosis of the
white matter, proximal and distal axonopathy, myelin
loss, gliosis, and perikaryal pathology demonstrable at
the light microscopic and electron microscopic levels.
Among the neurological assessment techniques are
EEG and EMG abnormalities, changes in nerve con-
duction and synaptic transmission, and altered levels of
neurotransmitters and other humoral agents. Behav-
ioral tests include measurement ofsensory losses, reflex
abnormalities, resting and intention tremor, gait ab-
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normalities, and severe cognitive and memory deficits.
This paper deals with a class of morphological and be-
havioral abnormalities of a more elusive nature induced
by harmful environmental agents which, because of
their nature, call for a different kind of morphological
and functional assessment. The morphological change is
not pathology, as usually defined, but a quantitative
reduction of the full complement of short-axoned neu-
rons of certain brain regions, and the behavioral dis-
turbance may be limited to hyperactivity and some at-
tentional, and possibly, learning, deficits. This paper
has two objectives. First, it will review a series of ex-
perimental studies in rats in which a technique was used
to interrupt the completion of neurogenesis, either in
the cerebellum or the hippocampus, at selected stages
of postnatal development and which was then followed
by an assessment of the behavioral effects produced.
Second, the paper will examine to what extent this ex-
perimental treatment and its consequences in the rat
might be construed as a valid model of minimal brain
dysfunction in man.
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The starting point of the experimental project was a
series of developmental studies using 3H-thymidine au-
toradiography in which we specified the precise chron-
ological order of neurogenesis throughout the rat ner-
vous system from its inception early during embryonic
development until its virtual cessation late in infancy.
This work established that, in the rat, the large popu-
lation of short-axoned neurons (microneurons) of many
brain structures are produced late in development and,
in some brain regions (like the olfactory bulb, hippo-
campus and cerebellum), predominantly or exclusively
after birth. This normative work was coupled with an
experimental approach in which the cerebellum or the
hippocampus was focally irradiated with low-level X-
ray to selectively eliminate the highly radiosensitive
precursor cells of microneurons without visibly harming
the earlier differentiating long-axoned neurons (macro-
neurons). Depending on when the postnatal X-irradia-
tion was begun, this resulted in a specifiable reduction
of the microneuronal population of the selected brain
region without any evident pathological effects either
at the light or electron microscopic levels. Subsequent
behavioral studies established that cerebellar micro-
neuronal hypoplasia produced profound hyperactivity
during infancy and adolescence, and hippocampal mi-
croneuronal hypoplasia led to hyperactivity, as well as
attentional and learning disorders, mimicking the syn-
drome of minimal brain dysfunction in man.

The Neuroanatomical Background:
Sequential Production of
Microneurons and Macroneurons
The technique of 3H-thymidine autoradiography

makes it possible to determine the birth dates of neu-
rons in experimental animals. When radioactively la-
beled thymidine (a specific precursor of DNA) is ad-
ministered to the fetus or neonate, the radiochemical is
taken up by the duplicating chromosomes of the prolif-
erating precursor cells of neurons but not by the nuclei
of differentiating (that is, postmitotic) nerve cells. In

one of the early applications of this procedure, it was
established that the sequence of production of neurons
in the cerebral cortex is from its depth toward its sur-
face (1). This suggested that the larger neurons of the
cerebral cortex (such as the deep pyramidal cells) are
generated before its smaller neurons (such as the su-
perficial granule cells). A later study using this tech-
nique demonstrated that in the olfactory bulb, the hip-
pocampus, and the cerebellum, the granule cells are
among the latest produced cells of the brain (2), indeed,
that in the rat these neurons are produced mostly post-
natally. This was the first indication that the granule
cells (microneurons) are distinguished from other neu-
rons of a given brain structure by their late genesis.

Subsequent studies have established that within sev-
eral brain structures, the production of macroneurons
(large neurons with long axons) and microneurons is
sequential. Thus, in the cerebellum (3,4), the cells first
produced are the neurons of the deep nuclei; the Pur-
kinje cells are generated next, and the last produced
elements are the Golgi, basket, stellate, and granule
cells, the axons ofwhich terminate within the cerebellar
cortex and thus complete its local circuitry. Similarly,
in the spinal cord (5), the motor neurons that project
to the skeletal muscles and autonomic ganglia are pro-
duced before the relay neurons that interconnect the
spinal cord with supraspinal structures, and the small
interneurons of the substantia gelatinosa are produced
last. Moreover, embryological studies have revealed
that the microneurons originate from a different prolif-
erative source, or germinal matrix, than do the macro-
neurons. For instance, in the spinal cord (5), the motor
neurons of the ventral horn (macroneurons) originate
from the cells in the basal plate of the neuroepithelium
surrounding the central canal, and the interneurons of
the dorsal horn from the alar plate. In the cerebellum
(6,7), the neurons of the deep nuclei and the Purkinje
cells originate sequentially from the neuroepithelium
surrounding the fourth ventricle, whereas the granule
cells arise from the superficially located external ger-
minal layer.
Macroneurons and microneurons can be distinguished

FIGURE 1. Location of extensive microneuronal systems in the rat brain in midsagittal section: (1) substantia gelatinosa of the spinal cord
(SC); (2) granular layer of the cerebellum (CE); (3) granular layer of the dentate gyrus of the hippocampus (HI); (4) supragranular layers
of the cerebral cortex (CC); (5) granular layer of the olfactory bulb (OB). Other abbreviations: cc, corpus callosum; IC, inferior colliculus;
ME, medulla; PO, pons; TH, thalamus.
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FIGURE 2. (A) Sagittal section through the cerebellum of an 8-day-
old control rat. (B) In this 8-day-old rat the cerebellum was irra-
diated with 200R X-ray between the 4th and 7th day. Note the
absence ofthe external germinal layer (dark band) over the surface
of the cerebellar cortex. (C) In this 11-day-old rat, the external
germinal layer begins to reappear after irradiation restricted to
days 4 through 7.

not only by developmental criteria but also by their form
and function in the mature nervous system. The prin-
cipal characteristics of macroneurons are large cell bod-
ies and long axons that either maintain connections be-
tween the central nervous system and peripheral
structures (receptors, muscles, and autonomic ganglia)
or interconnect distant components of the central ner-
vous system. The sensory ganglion cells of the spinal
and cranial nerve ganglia are examples ofmacroneurons
linking the central nervous system with the periphery;
the large neurons that project from the forebrain to the
hindbrain and the spinal cord (like the cortical pyramidal
cells) are examples of macroneurons within the brain.
The macroneurons constitute the projection neurons of
the nervous system that convey at a high speed either
sensory messages or motor commands. In contrast, mi-
croneurons are typically cells with short axons and ap-
pear to be local processing elements that interconnect
subcomponents of a single brain structure. In some
brain regions microneurons form discrete zones, known
as granular layers (Fig. 1).

X-lrradiation of the Cerebellum: The
Production of Cerebellar
Microneuronal Hypoplasia

Differentiating and mature neurons are not visibly
affected when exposed to 150-200 X-ray, but their pro-
liferating precursor cells are killed by such a dose (8).
In an attempt to determine the developmental conse-
quences of decimation of the germinal cells of the ner-
vous system, Hicks and D'Amato (9) exposed pregnant
rats to X-ray at different gestational ages and studied
the developmental effects of irradiation in their fetuses.
Our finding that, in the rat, the microneurons of the
cerebellar cortex are produced postnatally prompted us
to modify Hicks' procedure. We have irradiated the cer-
ebellum selectively in neonates by shielding the rest of
the brain and the entire body. The purpose was to de-
stroy selectively the external germinal layer, which is
the source of cerebellar microneurons, and later study
the behavioral consequences of agenesis of cerebellar
microneurons. Histological studies (10) showed that, as
expected, the external germinal layer (Fig. 2A) was
eliminated with a single dose of 150-200R X-ray (Fig.
2B), while the prenatally formed Purkinje cells were
spared. However, within a few days after irradiation,
the external germinal layer began to regenerate (Fig.
2C). Therefore, it became necessary to deliver supple-
mentary doses of X-ray at certain daily intervals to
prevent regeneration ofthe external germinal layer and
the consequent acquisition of cerebellar microneurons
(Fig. 3).

Behavioral studies showed that if the irradiation of
the cerebellum was begun at birth (11-13), or even when
it was delayed until postnatal day 4 (14), the severe
agenesis of cerebellar microneurons had profound neu-
rological consequences. These rats displayed such pos-
tural and motor abnormalities as intention tremor and
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FIGURE 3. Diagram illustrating the expected consequences of irradiation of the cerebellum after birth for cell acquisition in the cerebellar
cortex with different exposure schedules. Row 1 shows schematically the sequential production of different cell types in normal animals
and approximate postnatal ages. Row 2 shows that with repeated doses of X-rays (arrows), which destroy the cells of the EGL and prevent
their regeneration, the acquisition of the postnatally forming microneurons can be prevented. Row3 shows that similar effects can be
obtained by delaying irradiation until day P4. However, if the exposure to X-rays is begun on day P8 (row 4), the basket cells are spared,
and if it is delayed until P12 (row 5), the stellate cells are also spared and only the acquisition of the late granule cells is prevented.

ataxia, and they fell when attempting to rear. Subse-
quent light microscopic and electron microscopic inves-
tigations (15,16) revealed that severe agenesis of cer-
ebellar microneurons, though without effect on the
number and size of Purkinje cells, interfered with the
normal dendritic development of Purkinje cells (Fig.
4D). Therefore, our next attempt was to design an ir-
radiation procedure that did not lead to such a severe
microneuronal agenesis, but rather to a graded reduc-
tion of these cells, that is, microneuronal hypoplasia.

Cerebellar microneuronal hypoplasia can be experi-
mentally produced by starting cerebellar irradiation
after a certain proportion of the microneurons have al-
ready formed. Investigations dealing with the time
course of the neurogenesis of cerebellar microneurons
in the rat (17,18) have established that the basket cells
are produced mostly on days 6 and 7, the stellate cells
on days 8 to 11, and the granule cells beginning shortly
after birth until day 21. Experimental studies with X-

irradiation begun at different times and using different
exposure schedules (15,16,19,20) have indicated that the
presence of basket cells is essential for the guidance of
the normal outgrowth of the Purkinje cell main den-
drite.

Accordingly, in one group of rats irradiation was be-
gun on day 8 to spare the basket cells (Fig. 3, row 4).
This group will be referred to as 8-15X rats (radiation
begun on day 8 and terminated on day 15). In routine
histological preparations, the cerebellum of 8-15X rats
appeared normal except for its greatly reduced size
(Fig. 5C). This miniaturization was attributable pri-
marily to the substantial reduction in the population of
granule cells (Fig. 6B); the Purkinje cells were spared
(Fig. 6A). In material prepared with the Golgi technique
(19), the Purkinje cells showed an anomaly: their stem
dendrites were erect and the fine branchlets were di-
rected downward resembling weeping willows (Fig.
4C). In another group, referred to as the 12-15X rats,
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FIGURE 4. (A) Schematic illustration of stages in the development
of the cerebellar cortex from birth to 30 days. (B) X-irradiation
(arrows) of the cerebellum between days 12 and 15 results in
destruction of the superficial external germinal layer (egl). The
already differentiated Purkinje cells (Pc), basket cells (bc), and
stellate cells (sc) are spared; however, there is a reduction in the
total population of granule cells (gc), coupled with a truncation of
the expanse of Purkinje cell dendrites. (C)X-irradiation of the
cerebellum between days 8 and 15 prevents the generation of
stellate cells and affects the arborization pattern of Purkinje cell
dendrites which assume the shape of weeping willows. (D) X-ir-
radiation begun on day 4 prevents the production of basket and
stellate cells and most of the granule cells. The effect on the de-
velopment of Purkinje cells is drastic: the cell bodies of Purkinje
cells become scrambled, and instead of one upright main dendrite,
many such dendrites are formed and grow haphazardly.

cerebellar irradiation was begun on day 12 (Fig. 3, row
5). This procedure spared both basket and stellate cells
(20) and, on the average, spared over 50% of the granule
cells (Fig. 6B). The cerebellum of this group appeared
qualitatively normal, except that the reduction in size
of the cerebellar cortex (Fig. 5B) was- associated with
a slight truncation of the dendritic expanse of Purkinje
cells (Fig. 4B).

Behavioral Effects of Cerebellar
Microneuronal Hypoplasia

Initial observations failed to show any postural or
motor deficits in the 8-15X and 12-15X rats. There was
no indication of tremor, ataxia, or any difficulty with
ambulation. We reasoned that ifwe could only challenge
the 8-15X rats with a sufficiently difficult postural-lo-
comotor task, we might be able to demonstrate some
deficits in this more severely affected group. Accord-

FIGURE 5. Photomicrographs of the cerebellum in midsagittal sec-
tion from a normal rat (A), a rat irradiated between days 12 and
15 (B), and a rat irradiated between days 8 and 15 (C).

ingly, a motor-driven rotating rod apparatus was de-
signed (21) in which motor performance could be made
progressively more difficult by placing hurdles of dif-
ferent heights and different spacing in the path of the
animal as it voluntarily crossed the rod for a food re-
ward. The criterion was the rotation speed that the
animals could master. With this procedure we could not
distinguish the experimental and control groups; in fact,
in most of the tests, the 8-15X rats were slightly su-
perior to the controls, apparently because of their
greater willingness to run after they fell off the rod. It
was concluded that cerebellar hypoplasia, with a re-
duction of over 80% of the granule cells (Fig. 6B), does
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F'IGURE 6. Counts of Purkinje cells (A) and granule cells (B) at three
ages in control, 12-15X, and 8-15X rats in a matched region of
the cerebellar cortex. Modified from (21).

not produce any demonstrable locomotor deficits. How-
ever, in another experiment, 8-15X and 12-15X rats of
three ages (infants, young adults, adults) were com-
pared with controls in an open field. Each rat was ob-
served for 3 min on 5 successive days and the number
of squares crossed was tabulated. This measure indi-
cated (Fig. 7) that the two irradiated groups were more
active than the controls if tested at the age of 2 months
(young adults) or 6 months (adults).

Since ambulation in an open field is affected by emo-
tionality, we more directly tested the possible hyper-
activity of the 8-15X and 12-15X groups in individual
activity wheels attached to the home cages. The spon-
taneous running of the young adult irradiated animals
far surpassed that of the controls (Fig. 8). It was con-
cluded from these results (21) that microneuronal hy-
poplasia of a level of severity that does not produce
demonstrable locomotor deficits leads to hyperactivity
at an age when the animals tend to be most active.

INFANTS YOUNG ADULTS ADULTS

FIGURE 7. Ambulatory scores over a 3-min period in the open-field
test of three groups of rats at three ages. Modified from (21).

Behavioral Effects of Hippocampal
Microneuronal Hypoplasia

The two major components of the hippocampus are
Ammon's horn and the dentate gyrus (Fig. 9). The dom-
inant cell type of Ammon's horn is the larger pyramidal
cells, and the dominant cell of the dentate gyrus is the
smaller granule cells. In the rat, the pyramidal cells are
produced on embryonic days 17 to 19 (22), while the
bulk ofthe granule cells is generated postnatally (23,24).
The granule cells have relatively short axons that pro-

ject to a component of Ammon's horn, thus they rep-
resent the microneurons of the hippocampus. Experi-
mental studies using focal X-irradiation of the hippo-
campal region (25,26) showed that there is a substantial
reduction in the granule cell population if irradiation is
begun immediately after birth (Fig. 9B). This granule
cell hypoplasia (representing about 85% of the cells gen-
erated postnatally) (Fig. lOB) does not affect the mor-
phology of the hippocampus, except for a slight reduc-
tion in its length (Fig. IOA), and it is not accompanied
by a significant reduction in pyramidal cells (Fig. 10C).

Behavioral studies showed that rats with hippocam-
pal microneuronal hypoplasia are extremely hyperac-
tive when tested in an open field (25) and in running
wheels (27). In addition, the irradiated rats display
other behavioral changes usually associated with hip-
pocampal damage, including abolition of spontaneous
alternation in a T maze and deficits in passive avoidance
learning (25). In a subsequent investigation of the ef-
fects of hippocampal microneuronal hypoplasia on dis-
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FIGURE 8. Running performance of three groups of rats over a period of 30 days in activity wheels. (A)juveniles; (B) adults. Modified from
(21).

crimination learning, Bulut (28) used a T-shaped water
maze with access to an escape ramp as the reward. Four
age groups were compared on the speed of acquisition
of a spatial task (selecting the right or left arm) and its
subsequent reversal (Fig. 11), and on the acquisition
and reversal of a brightness discrimination task (se-
lecting the lighted or dark arm) (Fig. 12). The irradiated
animals were deficient at all ages. The deficit was less
severe at most ages on the acquisition of the spatial task
(Fig. 11) than on the more difficult brightness discrim-
ination (Fig. 12), and in both sense modalities reversal
learning was more affected than the original acquisition.
The handicap of the rats with hippocampal hypoplasia
was partly the result of making many incorrect re-
sponses before a task was mastered. Examples of these
incorrect responses were the adoption of a spatial strat-
egy when the solution required that the animals attend
to the visual cues, or persevering with the initially
learned solution when its reversal became necessary in
order to escape from the water.

This study raised a question about the nature of the
learning disability produced. Does hippocampal micro-
neuronal hypoplasia produce memory deficits, an atten-
tional disorder, or some abnormal response tendency?
In the next investigation (29), the learning speed of
irradiated and control rats was determined in a T-maze
motivated by food reward (Fig. 13). Tactile and visual

cues in the two maze arms were graded in difficulty by
decreasing their discriminability. In the tactile series
(Fig. 13A), the task of different groups of rats was to
heed at the choice point the texture of the metal floor
plates of the two arms, which ranged in difficulty from
the very easy (polished versus coarse textured alumi-
num plates; smooth/coarse) to the very difficult (two
grades of machined plates referred to as rough/coarse).
Task difficulty was operationally defined in terms of the
number of trials required by control rats to reach cri-
terion level of performance. After mastering the orig-
inal discrimination, each animal was required to reverse
its response. In the visual series (Fig. 13B), the cue at
the choice point was the overhead illumination of the
two arms, which ranged in discriminability from the
very easy (bright/dark) to the very difficult (two grades
of brightness; here referred to as bright/dull).
The results showed that as long as task difficulty was

in the very easy to moderate range (maximum of about
150 trials needed by control rats to reach criterion level
of performance) the irradiated rats were not handi-
capped, irrespective of whether the cues were tactile
or visual. Moreover, in spite of the fact that reversal
learning required more trials in every task than acqui-
sition learning, the irradiated animals were not handi-
capped in reversing their response as long as the task
fell in the very easy to moderate range. In contrast, in
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FIGURE 9. Ammon's horn (AH) and dentate gyrus (DG) of the hippocampus in a normal rat (A) and a rat focally irradiated on days 2 through
15 (B).

tasks that were difficult or very difficult (200-300 trials The tactile and visual cues used in the first two series
to criterion), the rats with hippocampal microneuronal of experiments (Figs. 13A,B) were interpreted as global
hypoplasia were significantly impaired, both in tactile or diffuse stimuli. An animal running down an alley
and visual discrimination, and in acquisition as well as necessarily receives sensory input about the texture of
reversal. the floor and about ambient illumination. If so, all cues
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FIGURE 10. Effects of X-irradiation of the hippocampus (solid bars)
on its length (A); the number of granule cells (B); and the number
of pyramidal cells (C) in comparison to controls (open bars). The
apparent decrease in the number of pyramidal cells (C) as a func-
tion of age results from the expansion of the volume of the hip-
pocampus during this period (A).

in these tasks were highly noticeable and differed only
in their discriminability from very easy to very difficult.
How would the performance of the experimental ani-
mals be affected if the cues were made less noticeable?
In a third incomplete series of experiments (Fig. 13C),
two localized, or focal visual cues were introduced that
were easily discriminable. In this experiment black and
white sheets, the cues to the location ofthe food reward,
were limited to the side of the goal arms. Although the
acquisition of this discrimination proved easy for the
control rats, requiring about 100 trials, the rats with
hippocampal microneuronal hypoplasia were handi-
capped both in the aquisition and reversal of this task
(Fig. 13C).

In summary, these experiments indicate that hippo-
campal microneuronal hypoplasia, not unlike cerebellar
microneuronal hypoplasia, leads to hyperactivity. In ad-
dition, retardation of hippocampal development also re-
sults in learning disabilities under certain circumstan-
ces. One of these situations appears to be when either
the discriminability of the sensory cues or their notice-
ability is reduced. The other situation is where the sub-
ject has to inhibit an established response tendency
(reversal task). These observations suggest that at-
tentional disorders, possibly caused by hyperactivity,
rather than a fundamental memory disorder, underlie
the poor discrimination-learning performance ofanimals
with experimentally produced hippocampal microneu-
ronal hypoplasia.

Do Toxic Agents Produce
Microneuronal Hypoplasia and
Behavioral Disorders in Animals
and Man?
With the technique of focal X-irradiation it is possible

to prevent in the rat the acquisition of the full comple-

0 [40:CONTROL

060 * HIPPOCAMPAL

FIGURE 11. Number of trials required to master a spatial discrim-
ination learning task in a water T-maze and its reversal, in four
age groups of normal rats (open bars) and rats with hippocampal
microplasia (solid bars). Modified from (28).

ment of postnatally forming granule cells of the cere-
bellum or a large proportion of the granule cells of the
hippocampus. As we noted, the behavioral effect ofmod-
erate cerebellar microneuronal hypoplasia is hyperac-
tivity, and the effect of hippocampal microneuronal hy-
poplasia is both hyperactivity and learning disabilities.
Since this is an experimental manipulation, the question
arises: do other harmful environmental agents affecting
the developing nervous system during the perinatal and
early postnatal periods produce microneuronal hypo-
plasia and correlated behavioral disorders? Since this
question has yet to be subjected to direct experimental
test, all we can do at present is cite indirect evidence
that supports this possibility. As much of this material
has been reviewed elsewhere (30), we shall present here
a brief summary of the concept of minimal brain dys-
function and mention a few illustrative cases, one con-
cerning the effects of lead poisoning in animals and man,
another of drug addiction in humans, and still another,
based on a new study by Courchesne and his collabo-
rators (31), linking autism in man to cerebellar micro-
neuronal hypoplasia.
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rats (open bars) and rats with hippocampal microplasia (solid bars).
Modified from (28).

Strauss and his collaborators proposed some time ago
(32,33) that the familiar hyperactivity, emotionality,
and attentional difficulties of children who were not
mentally retarded and showed few or no signs of neu-
rological disorders, was due to some unspecified brain
insult suffered during the perinatal period. This idea of
putative brain damage in children with learning disa-
bilities became widely accepted for a while (34,35). How-
ever, by the late 1950s, signs of uneasiness appeared
about this unwarranted neurologizing. Since brain dam-
age had not been demonstrated in these children, and
neurological symptoms, including soft signs such as mi-
nor EEG abnormalities were absent in many, it was
suggested that the adjective "minimal" be added to the
term "brain damage" (36) or that "damage" be replaced
by "dysfunction" (37). Others (38,39) have pointed out
that since many brain-damaged children show no signs
of this behavioral disorder, qualifying words like "min-
imal" or "dysfunction" do not salvage the syndrome as
conceptualized. Nevertheless, the concept of minimal
brain dysfunction has not been abandoned.

U

Faith in the neurological foundation of the hyperac-
tivity and learning disability syndrome may have sur-
vived in spite of all the criticisms leveled against it
because of strong indications of its organic etiology. As
early as 1939, Shirley (40) made a follow-up study of
prematurely born children and found that they were,
as a group, hyperactive, distractible, and stubborn, and
had difficulties with fine motor control. In a retrospec-
tive study, Pasamanick and Knobloch (36) found that a
higher proportion of children with school problems than
matched control children had perinatal medical compli-
cations, and that their major symptom was hyperactiv-
ity. Several large-scale recent studies have established
that prematurely born babies and small-for-date babies
are at a high risk for developing hyperactivity and/or
learning disabilities (41-46).
Low birth weight and preterm delivery may have a

variety of causes. Among the suspected antecedent con-
ditions are various toxicants, including tobacco smoke,
narcotics, and alcohol. Several studies have shown
(47,48) that the mother's smoking during pregnancy cre-
ates the risk of low birth weight, retarded early growth,
and subsequent hyperactivity and learning disabilities.
In a retrospective study, Denson and colleagues (49)
found that mothers of hyperactive children smoked on
the average much more than the mothers of control
children. The association between smoldng and the de-
velopment of hyperactivity in the child has also been
established in a large-scale prospective study (50). Sim-
ilarly, heroin addiction in the mother presents a great
risk of premature delivery or the delivery of small-for-
gestational-age infants (51-54), even when the mother's
malnutrition and inadequate prenatal care are ruled out
(55,56). The progeny of addicted mothers are reported
to be irritable and hyperactive as infants (57-59) and
distractable and inattentive during early childhood (60-
62).

Impulsivity, hyperactivity, perceptual disorders, and
learning disabilities are frequent symptoms in children
who in early infancy and childhood have been exposed
to lead (63-71). In severe cases oflead poisoning, mental
retardation and other hard neurological symptoms may
also be present (63,65,72). As lead poisoning tends to
result from oral intake of substances containing some
traces of lead (for instance, wall paint), the postulated
brain pathology must be incurred during infancy and
early childhood.
The effects of lead poisoning in children led to ex-

perimental studies in animals. Silbergeld and Goldberg
(73) reported that neonate mice administered lead in
various concentrations displayed motor deficits and hy-
peractivity. The pronounced hyperactivity was atten-
uated by stimulants such as amphetamines (74). Hy-
peractivity in animals as a consequence oflead poisoning
was reported by other investigators (75-78) as were
learning deficits (79-81). Alfano and Petit (82) found that
neonatal lead exposure in rats reproduced the complex
of symptoms associated with hippocampal dysfunction,
including deficits in spontaneous alternation, passive
avoidance learning, acquisition of visual discrimina-
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SENSORY LEARNING Very Easy
CUE TASK
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FIGURE 13. Summary diagram of the absence (NO) or presence (YES) of deficits in rats with hippocampal microplasia in the acquisition and
reversal learning of three tasks using different cues (tactile, global; visual, global; visual, focal) with five levels of difficulty, as defined by
the number of trials (T) required by control rats to master the task. Modified from (29).

tions, and their reversal. However, at present, direct
evidence of lead-induced hippocampal microneuronal
hypoplasia is not available. Most of the pathological
studies have concentrated on lead-induced vascular ab-
normalities and hemorrhages, which are particularly
pronounced in the cerebellum (83,84). Lead is taken up
preferentially by immature capillaries, and it interferes
with their development (85-87); the mature capillaries
are protected (88). These observations suggest that if
lead poisoning in neonate mice and rats does lead to
microneuronal hypoplasia, this effect is mediated indi-
rectly by way of interference with the development of
the vascular system of late-maturing brain regions.
No matter how strong the available evidence for the

organic etiology of the hyperactivity and learning dis-
ability syndrome, that, by itself, is no justification to
attribute it to minimal brain damage. Evidence for brain
damage has to come from an examination of the nervous
system itself. Adequate postmortem anatomical de-
scriptions of the brains of individuals diagnosed as hav-
ing suffered from minimal brian dysfunction are not
available. Descriptions are available of the brains of
fetuses and premature or full-term neonates in whom
hypoxia and consequent hemorrhage were thought to
be the major cause of brain insult (89-94). The most
common pathology in premature neonates is hemor-
rhagic destruction of the germinal matrix surrounding
the anterior cerebral (lateral) ventricles; in the full-term
newborn, the hypoxic damage may also affect the tissue
of the cerebral cortex. But the argument that these
acute hypoxic brain pathologies are representative of
damages associated with minimal cerebral dysfunction
(95) is difficult to accept. Even if many of these fetuses
and neonates died of causes other than the neurological

complications, it is unlikely that the focal lesions de-
scribed would have remained unaccompanied by hard
neurological symptoms in the surviving child. As Tow-
bin (96) suggested, these acute hemorrhagic damages
seen in hypoxic fetuses and neonates are antecedents
of the cerebral lesions, cavitations, and scarring seen
in the brains of the mentally retarded and cerebral pal-
sied children.
Recent technological developments in the visualiza-

tion of features of the brain with computer-aided im-
aging techniques have raised the possibility of an in
vivo investigation of the proposition that microneuronal
hypoplasia in man is associated with behavioral disor-
ders. In a recent study, Courchesne et al. (31) used the
magnetic resonance imaging technique to examine the
brain of a patient with Kanner's syndrome, the classic
form of autism without mental retardation. The prin-
cipal morphological abnormality found (Fig. 14) was a
cerebellar hypoplasia of lobules VI and VII in the pos-
terior vermis. Courchesne and his collaborators have
since scanned the brains of 17 autistic individuals and
found macroscopic signs of selective hypoplasia in ver-
mal lobules VI and VII in 13 of these individuals (per-
sonal communication).
Although the resolution provided by this imaging

technique does not reveal the microscopic features of
the morphological abnormalities, our past findings re-
garding the exact chronology of rat cerebellar neuro-
genesis suggests that these cases may represent a se-
lective form of cerebellar microneuronal hypoplasia.
Figure 15 is reproduced from a study (17) in which rats
were injected with multiple doses of 3H-thymidine be-
ginning on postnatal day 11 in order to label all the
cerebellar granule cells that are produced between days
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C.
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NO NO YES
1 smooth/coarse smooth/rough

NO NO
bright/dark bright/faint bright/dull
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B
Patient with Autism

Midline Sagittal Midline Sagittal

C

Patient with Autism

7.5 mm Above
Fourth Ventricle

Axial

FIGURE 14. Sagittal (B) and axial (C) MRIs show hypoplasia of pos-
terior vermis (pv) and of medial aspect of cerebellar hemispheres
(m) in nonretarded patient with infantile autism. Folia of the pos-
terior vermis are incompletely formed. Cisterna magna (cm) is
enlarged. Other midline structures, including fourth ventricle
(IV), brainstem, diencephalon, corpus collosum (cc), and medial
cortical areas (e.g., cingulate gyrus, ci), appear normal. The mid-
line sagittal section of a normal subject is shown in (A). Courtesy
of Eric Courchesne.

A
Normal
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YIia

I

FIGURE 15. Schematic presentation of the percentage of granule cells labeled in the different lobules of the vermis (I-X) in rats that were
injected with multiple doses of 3H-thymidine between days P11 and P16. Regions where less than 45% of the cells could be tagged are
considered early forming, while those where more than 60% of the cells were labeled are considered late forming. From (17).

11 and 21 (the day when cerebellar neurogenesis comes
to an end in the rat). There were considerable regional
differences: in some regions only 25% of the cells could
be labeled (which indicates that 75% of the granule cells
in that region are generated before day 11), while in
other regions up to 78% of the cells were labeled. The
shadings in Figure 15 are based on an arbitrary tripar-
tite division into an early generated region (25-45% la-
beled), an intermediate region (45-60% labeled), and a
late generated region (60-78% labeled). The latest de-
velopiiig region of the cerebellar cortex includes lobules
VI, VI!, and VIII. Lobule VIII (the pyramis) had the
lowest labeling among the three lobules (63-64%) (17)
(Fig. 11A), and is therefore an earlier generated region
than lobules VI and VII found affected in the studies
of Courchesne and his collaborators. Thus the question
arises whether interference with the acquisition of the
latest generated microneurons of the cerebellar cortex
is the structural cause of autism.
Autism has been related to auditory and visual per-

ceptual disorders. It is of significance, therefore, that
vermal lobules VI and VII are unique regions of the

cerebellum where evoked responses can be recorded to
auditory and visual stimuli (97). The auditory projection
is direct from the cochlear nucleus (98,99). Vermal lob-
ules VI and VII have also been implicated in the vol-
untary control of eye movements (100-103). Thus, se-
lective hypoplasia of the large (and presumably latest
developing) vermal lobules VI and VII in man could
interfere with auditory and visual attentional mecha-
nisms.

Morphological and Behavioral
Markers of Retarded Brain
Development in Man
When we consider the applicability of the syndrome

of microneuronal hypoplasia in rats to minimal brain
dysfunction in man, we must take into account some
important differences in the time course of neurogenesis
in the two species. Apart from the obvious difference
in the speed of development (the prenatal period of ner-
vous system development in the rat is only about 12
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days, from embryonic day 10-21), the human brain is
much more mature at the time of birth than the rat
brain. While direct evidence is not available, the pro-
liferation of the precursors of microneurons must be
largely a prenatal phenomenon in man. This is indicated
by the relatively small size of the germinal matrix of
the cerebral cortex at birth and by the reduced width
ofthe cerebellar external germinal layer, which persists
in man well into the second year of life (104).
Due to this chronological difference in brain devel-

opment, it may be expected that the greatest risk of
microneuronal hypoplasia in man is not in the infantile
period but at some late stage of fetal development and,
in particular, upon the exposure ofthe prematurely born
and the small-for-date infant to toxicants. In fact, many
studies are available to show that babies "born too soon
or born too small" (46) are at a high risk for developing
behavioral disorders, particularly hyperactivity and
learning disabilities (41-45, 105-109), with boys dis-
playing this syndrome more often than girls (46). Since
only a small proportion of the high-risk children are
diagnosed as suffering from behavioral abnormalities,
and some of the potential disorders may be prevented
by special care, it may be advisable to screen those at
risk for the presence of retarded brain development and
its extent by using the magnetic resonance imaging
technique.

This research project was supported by the National Science Foun-
dation and the National Institutes of Health. The original investi-
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laboration with William J. Anderson, Shirley A. Bayer, Robert L.
Brunner, Fatma Bulut-de Eskenazy, Russell A. Gazzara, and Louis
J. Pellegrino. An earlier, detailed version of this article appeared in
M. Lewis (Ed.), Learning Disabilities and Prenatal Risk, University
of Illinois Press, Urbana, IL, 1986. Extracts are published by per-
mission of the Board of Trustees of the University of Illinois.
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